˂AOC + <BOC  = 180o
      ao  +  bo
         = 180o
Contoh
: jika diketahui ao = 105o berapa nilai bo ?
Jawab
: ˂AOC + <BOC = 180o
                   ao  +  bo         = 180o
              105o  +  bo         = 180o
    105o - 105o  +  bo         = 180o - 105o  
                                             bo         = 75o
Contoh : Tentukan nilai x pada gambar berikut
Jawab : ˂AOC + <BOC = 180o
                 3xo
 + 
2xo       = 180o
                          5xo         = 180o
                       5 : 5xo         = 180o  : 5
                                xo         = 36o 
˂AOC + <BOC  = 90o
      xo  +  yo          = 90o
Contoh
: jika diketahui yo = 48o berapa nilai xo ?
Jawab
: ˂AOC + <BOC = 90o
                   xo  +  yo         = 90o
                  xo  +  48o         = 90o
              xo
+ 48o  - 48o  = 90o - 48o  
                                            xo         = 42o3. Sepasang sudut saling bertolak belakang
·          
Sudut-sudut
yang saling bertoak belakang besarnya sama
·          
Pasangan
sudut AOC dan <BOD, <AOD dan <BOC adalah saling bertolak belakang maka
<AOC = <BOD dan <AOD = <BOD
Contoh :
Bila besar <AOC = 45o maka besar <BOD = 45o
berapakah sudut AOD ?
Jawab : <AOC + <AOD = c
                45o    + <AOD = 180o
                      45o - 45o    + <AOD = 180o - 45o    
                                                               <AOD = 135o4. Sifat dan Hubungan Sudut pada Garis Sejajar yang Dipotong Sebuah Garis
·        
Garis
a//b
·        
Garis
k memotong garis a di titik A dan memotong garis b di titik B 
Berdasarkan gambar di atas didapat
hubungan sudut-sudut sebagai berikut :
a.      Pasangan Sudut Sehadap 
1)      <A1 dengan <B1    ->  
<A1 = <B1
2)      <A2 dengan <B2    ->  
<A2 = <B2
3)      <A3 dengan <B3    ->  
<A3 = <B3
4)      <A4 dengan <B4    ->  
<A4 = <B4
b.      Pasangan Sudut Bertolak Belakang
5)      <A1 dengan <A3    ->  
<A1 = <A3
6)      <A2 dengan <A4    ->  
<A2 = <A4
7)      <B1 dengan <B3    ->  
<B1 = <B3
8)      <B2 dengan <B4    ->  
<B2 = <B4
c.       Sudut dalam Bersebrangan
1)
<A3 dengan <B1    ->   <A3 = <B1
2)
<A4 dengan <B2    ->   <A4 = <B2
d.      Sudut Luar Bersebrangan
1)      <A1 dengan <B3    ->  
<A1 = <B3
2)      <A2 dengan <B4    ->  
<A2 = <B4
e.      Sudut Dalam Sepihak
1)
<A3 dengan <B2   ->    <A3 = <B2 = 180o
2)
<A4 dengan <B1   ->    <A4 = <B1 = 180o
f.       
Sudut
Luar Sepihak
1)      <A1 dengan <B4   ->  
 <A1 = <B4 = 180o
2)      <A2 dengan <B3   ->  
<A2 = <B3 = 180o
5. Menggunakan Sifat-sifat sudut dan Garis untuk Menyelesaikan Soal
a. Perhatikan gambar berikut!
Jika P1 = 75o tentukan besar sudut-sudut yang lain dalam gambar tersebut?
Jawab :
·         <P1 = <Q1 = 75o  (sehadap)
·         <Q1 = <Q3 = 75o (bertolak belakang)
·         <Q4 = 180o - <P1
<Q4 = 180o - 75o
<Q4 = 105o
<Q4 = <Q2 = <P2 = <P4 = 105o
Jawab :
(3x – 60)o +
(6x + 150)o = 180o
(3xo – 60o)
+ (6xo + 150o) = 180o
   3xo + 6xo  – 60o + 150o = 180o
                      9xo + 90o = 180o
9xo + 90o - 90o
= 180o - 90o
    
9xo = 90o
                                                     9 : 9xo = 90o  : 9
              xo         = 10o
c. Hitunglah
nilai po dan qo
Jawab
:
v   (2p – q)o + (2q)o =
180o
2po
– q o + 2qo = 180o
2po
+ 2qo  – q o =
180o
2po
+ 2qo  – q o =
180o
2po + qo   = 180o
v    po 
= 180o
Atau kita subtitusikan po  = 180o  ke dalam 2po + qo   = 180o
untuk mencari nilai qo
  2po + qo   = 180o
2(180o) + qo   = 180o
     360o + qo
  = 180o
360o
- 360o + qo     = 180o
- 360o
qo
  = - 180o 
Jadi
nilai po dan qo adalah po = - qo atau po = 180o dan  qo = - 180o
v  Pembuktian 
Cobalah subtitusikan ke dalam persamaa 2po + qo   = 180o
Untuk po = 180o dan qo = - 180o
2 (180o) + (- 180o)    = 180o
360o
    -   180o  
 =   180o
                                                  180o       =   180o  (Terbukti ruas kiri sama dengan ruas kanan)








bu nulise ake men
BalasHapusKalau udh d tulis mah sedikit
BalasHapus